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A lattice sum technique is applied to the constraint equation of the finite size 
mean spherical model. It is shown that this allows the investigation of the model 
over a wide range of temperatures, for a wide range of system sizes. Correlation 
lengths and susceptibilities are shown to obey crossover scaling around T = 0  
below the lower critical dimension, and finite size scaling between the lower and 
upper critical dimensions. Universal scaling forms are suggested for the lower 
critical dimension. At and above the upper critical dimension, the behavior is 
identical to that of finite sized mean field theory. The scaling at and above the 
upper critical dimension is shown to be modified by the existence of a dangerous 
irrelevant variable which also governs the failure of hyperscaling. Implications 
for phenomenological renormalization experiments are discussed. Numerical 
results of scaling are displayed. 

KEY WORDS: Finite size scaling; spherical models; phenomenological 
renormalization. 

1. I N T R O D U C T I O N  

Fin i t e  size scal ing,  p r o p o s e d  a n u m b e r  of  years  ago by  F i she r  (l) has been  
widely used to ext ract  the t h e r m o d y n a m i c  l imi t  f rom finite systems of  smal l  
size. In  regard  to a fully f inite sys tem of l eng th  scale L (for example ,  a 

sys tem of  cub ic  g e o m e t r y )  the t heo ry  can  be s u m m a r i z e d  as follows. Let  

Z(t) be a r e sponse  f u n c t i o n  b e h a v i n g  as Z ~  t ~ in  the t h e r m o d y n a m i c  l imit .  
F o r  f inite L, 7~L will be r o u n d e d ,  a n d  scale in  the  fo rm (1 3) 

zL(T) ~ L~/~X(L~/~7) (i) 
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Here v is, as usual, the exponent measuring the divergence of the 
correlation length 4, and 

T -  T c 
7 - - - +  e(L) (2) 

Tc 

where e(L) is a shift obeying limL~ ~ e(L)= 0, and X(x) is the rounding 
function. It has been argued (2'3) that corrections to Eq. (1) should be 
governed by corrections to scaling of the infinite system. 

Finite size scaling can be derived from simple renormalization group 
(RG) scaling arguments. (3'24) Consider the RG transformation for the 
susceptibility. It will scale like 

Z~( t, u) = bv/vX( tbl/~, ub y) (3) 

where b is the RG rescaling factor, t is the temperature like scaling field, u 
is the most important irrelevant scaling field, and y < 0. (We are neglecting 
other relevant fields, suoh as the applied magnetic field in the case of a 
magnetic critical point). This scaling form implies a power law divergence 

Z ~ ( t , u ) ~ t  ~X(1,0)+t-(~+Yv)uXu(1,0)+. . .  (4) 

where the second term is the correction to scaling of the infinite system. 
For a finite system of length L, Brezin (2) has argued that the RG 

rescaling factor b can be taken proportional to L, and a modified form of 
(3) holds (L is not rescaled). The finite size scaling form is 

ZL(t, u)= Lv/~X(TL1/V, ~tL y) (5) 

(We have included the possibility of finite size shifts in the scaling fields, 
which are often ignored). Expanding this form for small u yields the correc- 
tion to scaling. If the infinite system behaves as 

;(~(t) ~ t-~(1 + t p) (6) 

then the finite system will scale as 

ZL(t) = L~/~X(TLI/V) + L(~-P)/VuXu(tL 1/v) (7) 

The second term is the correction to finite size scaling, and will govern con- 
vergence to the scaling form of Eq. (1). 

An important application of (1) is the phenomenological renor- 
realization (PR) transformation introduced by Nightingale (4) (see Ref. 5 for 
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a more recent review). Noting that the finite size scaling equation for the 
correlation length takes the form 

~ c ( T )  = L y(L1/'~7) (8) 

one can define a rescaling transformation, L --, L ' ,  t ~ t' via the constraint 

~L( t ) /L  = ~L, ( t ' ) /L '  (9) 

which has t = 0 as a fixed point. It is possible to develop approximates to tc 
as the intersection between ~ L / l  and ~L,/L'. By Eq. (2) above, t,,,L defined 
by 

~c(tc ,L) /L = ~L,(t,. L) /L '  (10) 

(often L ' =  L + 1 is taken) will converge to t = 0 as 

with corrections to Eq. (10) occurring from bulk ( L =  ~ )  corrections to 
scaling. The critical exponent v may be recovered via the equation 

I/vL=InLL3T(t,.L)(l~(t,.c))- ]/ln(L/L', (12, 
which also will have corrections originating from the bulk (for discussions 
of Eqs. (4) and (6) and methods of increasing convergence rates, see Refs. 3 
and 6 and references contained therein). 

In this paper we shall discuss the mean spherical model with periodic 
boundary conditions in a cubic geometry (finite in all directions). Although 
finite size effects in the spherical model have been considered in some detail 
for certain geometries (2,7 9), we believe that the technique discussed herein, 
which involves the Ewald sum technique to perform a sum over the 
Brillouin zone, is of interest for a variety of reasons. It allows us to study 
the system numerically over the complete range of values of the parameters 
L, T, and H, not just in the asymptotic regime. It also allows us to generate 
expansions for the thermodynamics, both in the finite size scaling regime, 
and in the regime which approaches the thermodynamic limit exponentally. 
This makes it possible to see the expected features of finite size scaling 
emerge in a simple way, including corrections to scaling. Finally, we believe 
the technique to be applicable to other systems (1~ 

The paper is divided as follows. In Section 2 we present a brief review 
of the thermodynamics of the model. In Section 3 we describe our method 
of defining the correlation length in a finite system and of solving the 
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model for H = 0. Section 4 is a lengthy discussion of finite size scaling of 
the model in all dimensions less than d =  6. Results of phenomenological 
renormalization experiments are shown to exhibit proper behavior for d 
between 2 and 4, and for d less than 2. Failure of the usual scaling form at 
the lower critical dimension, d = 2, is discussed in some detail. Presence of 
a dangerous irrelevant scaling variable is proposed as the mechanism for 
the structure of scaling when d >  4. 

For readers who wish to skip the calculational details, we summarize 
the results obtained in Section 4. Those readers may also want to consult 
the figures of that section which illustrate the results with numerical graphs 
of ~L. 

d~<2 

Since finite size scaling is often used to determine whether or not a 
given finite system undergoes a transition in the thermodynamic limit, the 
behavior of finite systems at and below their lower critical dimension (two 
for the spherical model) is of interest. Both the finite and the infinite 
spherical models have a critical point at T =  0, but with different critical 
exponents. One expects the system to show crossover from infinite to finite 
behavior as T = 0  is approached. For d < 2 ,  crossover scaling (see 
Refs. 1, 11) is obeyed, with dominant corrections governed by bulk correc- 
tions, as expected. For d = 2 ,  however, the infinite system has essential 
singularities in thermodynamic functions. These contribute logarithmic 
terms which prevent the usual scaling form from being realized. The follow- 
ing general scaling forms hold 

~L/L = X(~oo/L ) (13) 
and 

)~L(T) = Zoo(T) Y(~oo/L) (14) 

The possible generality of this result is suggested by the fact that it holds 
for both the Ising model and the spherical model at their respective lower 
critical dimensions. We find, in addition, that (1) Eq. (13) implies that a 
PR experiment will show an apparent collapse of the functions ~/L as T = 0 
is approached, and (2) Eq. (14) is not very useful in analyzing data, 
because the relationship between Zoo and ~oo must be known in order to get 
a useful scaling form. 

2 < d < 4  

In this regime, finite size scaling was shown to hold for the spherical 
model by Brezin. (2~ In a recent work, Luck (12) has shown that the correc- 
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tions to finite size scaling are dominated by the corrections to scaling in the 
thermodynamic limit, as predicted. (31 Our results agree with those of these 
authors. They have also shown the scaling functions are singular in the 
limits d ~  2+  and d ~  4 - .  We show that the dominant corrections are 
also singular, but in such a way as to keep the overall functions non- 
singular. 

d>~ 4 

This case was studied in detail by Brezin. (2~ In his paper, he raises 
three issues which we reconsider here. (1) He asserts that the behavior of a 
finite system is inconsistent with mean field theory, which predicts a phase 
transition even for a finite system. (2) He argues that finite size scaling fails 
at and above four dimensions, because the thermodynamic functions do 
not fall in the expected form (Eq. (1)). (3) On the basis of (1) and (2) 
above the fact that the limit d ~ 4 is singular, and in fact that the limiting 
critical theory in a bulk four-dimensional system is mean field theory, he 
concludes that an e expansion is not useful in studying a finite system. 

Our conclusions are as follows. (1) In more than four dimensions, the 
theory which predicts the behavior of a finite system is a version of the 
Wilson Ginzburg-Landau theory for a zero-dimensional system which 
yields the free energy 

F(t, h, u)= L-dln {f dO exp[-Ld(tO2-htp + u~4)]} (15) 

This free energy can be thought of as describing the behavior of an 
isolated, "giant" moment. We note that a modified form of (15) can be 
shown to correctly describe finite size rounding at a first order phase trans- 
ition in a fully finite system. (13/ We call this theory "rounded mean field 
theory," because it exhibits finite size rounding for finite L. In more than 
four dimensions, the finite spherical model and rounded mean field theory 
yield identical predictions near To. In four dimensions, parameters in 
Eq. (16) must be renormalized to yield the correct behavior. With that 
renormalization the results of this theory and the finite spherical model are 
identical. (2) In more than four dimensions, there is in the scaling form of 
the spherical model a dangerous irrelevant variable, which causes 
hyperscaling to fail. Finite size scaling holds, however, in the sense that (5) 
holds. However, Eq. (7) does not follow, because the scaling function is 
singular at u = 0. This is also the case in mean field theory. (3) Taking these 
results into account, one is led to reconsider the possibility of investigating 
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a finite system via the e expansion. In Fact the e expansion has already 
been applied to the case of a finite Ising model in 4-e dimensions, yielding 
scaling functions of the expected form for thermodynamic quantities. (1~ 

2. T H E  I N F I N I T E  S Y S T E M  

In this section we will review the thermodynamics of the mean 
spherical model. Although the results discussed here are well known, we 
present them in order to introduce notation and methods which will be 
useful later. For  a review which includes a more complete discussion and 
references to the model, see Ref. 14. 

We are interested in the mean spherical model in a cubic, 
L x L x . . .  x L = L d, geometry, with periodic boundary conditions. 2 This 
model is essentially a Gaussian model with a constraint. The energy of 
interaction is 

E{a} = - 1 E  j ( l - l ' )azar -  HE a,+ # E a ~ 
2 l , l '  I l 

and the constraint is 

(16) 

1 8  
L a-  @lnZ  (17) 

Equation (17) is equivalent to the constraint 

< ~ >  = L  d ( 1 8 )  l 
which was originally intended as an approximation to the constraint of the 
Ising system, namely 

a 2 =  1 (1 <<.I<~N) (19) 

The constraint equation is essential in developing the thermodynamics. 
With nearest neighbor interactions (which we will assume throughout this 
paper) J(l+/') = J6t, l+l ,  and Eq. (17) takes the form 

/~{~d ~ I0{-}-Jl~l (1- c~ 1 l~/(1 H2) ,,i . . . . . . .  , = j / \  - e 2 /  ( 2 0 )  

2 The connection between the n-vector model in the n --+ oo limit and the spherical model still 
holds with periodic boundary conditions, m) 
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where 

~ = - p - J d  (21) 

This equation defines ~(T) implicitly, from which the thermodynamics can 
be obtained. For example 

Susceptibility z(H = 0) = l/a(T) 

Correlation length ~(H= 0 )=  1 / ~ ( T )  (22) 

k-space correlation function G(k)=f1-1 c~+J ( 1 - c o s k i )  

all depend upon T through c~(T). 
In the infinite system, the sums in Eq. (20) are replaced by integrals. 

With H =  0, Eq. (20) can be shown to be equivalent to (15) 

fl = I ~ e-~t[Io(Jt)]  J dt (23) 
Jo 

by writing 

E j c t + J ~  1 - c o s  

} 
1 

The quantity Io(Jt) appearing in (23) is a modified Bessel function. A con- 
tinuous phase transition occurs where ~ = 0. Thus, Tc is defined by 

~(Tc)=0 (25) 

Equation (23) can be expanded about the point ct = 0 in the following way. 
Write 

fo ~ ;? e - " [ I o ( J t ) ]  a dt = e "'Ia(Jt) dt 

;) + e-~'Ig(Jt) dt (26) 
o 

where Ko is large enough to use the asymptotic expansion (16~ for Io(x) 

Io (x )~eX(2zx )  -1/2 as x ~  oo (27) 
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/ 1 "~d/2fK O' fi=F(c~,Ko)+(~-~)) e-~tt d/2dt (28) 

which defines F(cr ko) as an analytic function of cr An asymptotic expan- 
sion for the second term of Eq. (28) can be derived by repeated integration 
by parts. Thus, for d in the range 2 < d < 4, for example, 

e - ~ t t  - d / 2  dt = K ( d _  2)/2 2 0 - d-----2 F ~(d 2)/2 

+ taylor series in cr (29) 

The only contribution to the integral that goes as a nonintegral power of cr 
is the second term in the r.h.s, of Eq. (29). For small ~, the constraint 
equation is, then 

J~ ~- tic" - -  ao~ ( d- -  2 )/2 -Jr- b~ + O(cr 2) (30) 

Inverting 
~r t-i/(d- 2/ (31) 

From (31) the thermodynamics at H =  0 are 

Susceptibility )~ ~ t 2/(d- 2) 

Correlation function G(l) =f ( /2 )  e-12t~/( d 21 (32) 

Correlation length ~ ~ t -  1/(d 2) 

and the various critical exponents follow straightforwardly 

( 1  
v d 2 7 d - 2  C ~ = d - 2  

3. THE FINITE SYSTEM 

In a finite system, there are two complications to the picture described 
above. First, the position space correlation function G(I) no longer decays 

In fact, G(I) has the periodicity of the lattice. Thus, ~ is monotonically. 
no longer a reasonable inverse correlation length. Consequently, 

42 _ ~1 lZG(1) 
Z ,  G(I) (33) 

is the expected definition of correlation length. 
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The above sum can be calculated. However, on a periodic lattice, l 2 
should be replaced with a length function having the periodicity of the lat- 
tice. We propose replacing 12 with 

2 z2 + ' "  + COS (34) 

in Eq. (33). This reduces to l 2 for L>L Using this definition and Eq. (22) 
for the correlation function, an elementary calculation (see Appendix A for 

2 _ d L 2  

details) yields 

1 -  

dL2J 
0~L2+292 J as L ~  oo (35) 

for the mean spherical model. 
The second complication is that the constraint equation (20) which 

must be inverted to obtain c~(T) involves a sum rather than an integral. The 
sum in Eq. (20) cannot be performed analytically, as far as we know 
(except in one dimension). For small values of L it can be summed 
explicitly on a computer. For moderately large values of L the computation 
becomes prohibitive, because of the slow convergence of the sum; the terms 
decay only as fast as 1/k 2 near the edge of the Brillouin zone. In fact, the 
sum is reminiscent of the slowly converging sums encountered in com- 
puting ionic crystal binding energies (Madelung constants). A variety of 
techniques have been developed to speed convergence of these sums, the 
technique developed by Ewald ~ being a highly successful one (see Ref. 18 
for a general discussion of the method). In what follows we apply the 
Ewald technique to Eq. (20). 

First, we write the sum as 

1 ,o 
fl=~'gnl~nefo dtexp{-[c~+J~(1-cos~)lt  } (36) 

Then we divide the integral over t into 

~ dt + f~ dt (37) 

where K is to be determined. Consider first the second term of Eq. (37). 
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For  K sufficiently large, the sum over n~ converges rapidly, and so we can 
approximate the cos with its second order approximation, which yields 

~ ;~dtexp{-Ic~+2~ [2~ "~2]t} (38) 

Let K = qL 2, with q to be determined, and let 

L / 2  

S(x) =-- ~ e x p ( - n  2x) 
n = ~ L / 2  

(39) 

Changing the variable of integration from t to x - - t / q L  2 

~O e - c~q L 2 

L~_2q ;, dx e-~er2~( [S(2~ZJqx)]U-1} 4-~c~L2 (40) 

where we have separated out the n~-~ n2 = ' "  = nu-~ 0 term. 
The remaining term in Eq. (37) can be handled with the Poisson sum 

formula ~2) 

ddk 
= /~  ~ rillouin 

m l , . . . , m d ~  - - o o  zone 

d 

The m r  terms are damped in k by e ~"kc ,  so again the cos can be 
approximated. The m = 0 term can be integrated exactly. These two steps 
yield (again taking K =  qL 2) 

K d + ~ Io(Jt ) e -~' dt (42) 
JO 

Putting this together 

eK 1 
fl Jo ~ e-  ~tI~(Jt) aft + ~ f (eL  2) (43) 
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with 
2 ~_...~1 q ov ~o -- ~ x { f(c~L ) e ~L2q ~- fl [S(2n2jqx)] d -  1 } dx 

+ ~-h\~-n-)j q(2-a)/2;~ e--:~L2q/xx(d--4)/2 S - -  1 d x  

(44) 

The above equation was easily run on a computer (a VAX 780 at 
UCSC) and inverted to yield c~L(T). The sum S(x) converges rapidly for q 
judiciously chosen, because x is no smaller than 1. Here q is chosen to be 
(2n J) -1 to satisfy the balance between the convergence requirements of 
S(2Jrc2qx) and S(x/2Jq). Four terms of each sum were taken. The 
integrands are rapidly damped and so can be integrated easily using a 
Simpson's rule algorithm. The most difficult term computationally is 

Xe-" 'Ig(Jt)  dt (45) 

This was written 

o e -~tUo(Jt ) dt + e -u'Uo(Jt ) dt (46) 
o 

In the first integral, the approximation scheme of Abramowitz and Stegun 
was employed for the modified Bessel function (Ref. 16, p. 378, Eq. 9.8.1 
and 9.8.2). The second term was treated analytically via the first term of the 
asymptotic expansion for Io(x), Eq. (27). Here K0 was chosen to be 88 for 
somewhat machine dependent reasons. Since K must be greater than K o, 
the minimum length is L = (K/q) ~/2, which is approximately 24. For L < 24 
the sum in Eq. (20) was computed exactly. 

The only approximation in Eq. (43) was in replacing the cosines in the 
integrals by a low order expansion in their arguments. Thus, the terms 
written there are only the leading terms in an asymptotic expansion. The 
next terms (or the leading corrections) can be derived in a standard man- 
ner. Both fall in the form 

g(~L2)/L a (47) 

4. I M P L I C A T I O N S  FOR FINITE SIZE S C A L I N G  

From Eq. (43) and (35) it is possible to see the expected features of 
finite size scaling emerge mathematically. The first can be written in the 
useful form 

fK ~ g(~L2) La-2[fl-f l~o(o~)]+Ld-2 e-Utldo(Jt) d t=f(e tL2)+ L2 (48) 
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where ~oo is the inverse temperature of the infinite system (Eq. (23)) and f 
and g are defined in Eq. (44) and (47). The scaling equation for the 
correlation length is found by expanding the cos in Eq. (35), yielding 

To show that finite size scaling holds, it is sufficient to show that Eq. (48) 
takes the form 

La-Zt =- W(eL z) (50) 

with W(x) some function. Then inverting will yield 1/e equal to a function 
in the form L2X(L1/Vt), and scaling of the susceptibility and correlation 
length will follow from their definitions (Eq. (22) and (49)). 

To obtain the key result above, we use the methods of Section 2 to 
expand 

fx~ e-"tlao(Jt) dt (51) 

the term in Eq. (48) which does not scale manifestly. We illustrate the 
method in detail for the case 2 < d < 4; in all other dimensions one follows 
a similar procedure. 

Let K =  qL 2 with q = (2n J) ~ as above. Using the symptotic expansion 
for Io(x) (Eq. (27)) and integrating by parts yields 

oo ( 2 ~ L 2 2 (2 
fK e-~I~(Jt) dt=qd/2 ~--d-L-2 e- q (qL ) -d)/2 

2 F (4 - a~ e(a_ 2)/2 
d - 2  \ 2 J  

2 ~ 2 ( - 1 ) " e  "+1 (qLZ),+z_d/2) + (52) 

In Section 2 we saw that 

~oo(~) --- fl~.- ae ~J 2)/2 + be + ..- (53) 

Note that the nonanalytic terms must cancel, since S(e-"tlg(Jt)dt is an 
analytic function of e for finite L (Koc.L 2 which is finite). We find for the 
constraint equation 

La-2(fl - floo) - - f (eL  2) +~-~z g(eL2) + h(~L2) 

b L2  (eL2)2 L {eL2) 
+-~z-2+ L6_a ~- \--~T/I (54) 
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with 

2 ( ~  2(-1)~(c~L2q) ~+1 ) 
h(c~L2) = ~ q n = o n! 2n + 4 - d t- e-~xL2q 

Now, f(c~L 2) (defined in Eq. (44)) has an expansion of the form 

1 
f(o~L 2) = ~ + A 1 + A2 ~ + A 3(~L2) 2 q- " ' '  

(55) 

(56) 

With Ai's determined numerically through Eq. (44). The terms in Eq. (54) 
which are independent of (~xL 2) will generate a temperature shift. 
Equation (50) is realized as 

With 

Ld-2 { 1 } b~ g(~ 
- - ~ [ t - e ( L ) ]  = W(~L2)+--~S-~+----s "'" 

2 ) L2_d e ( L ) = T  A,--d-~_2q 

W(ccL 2 ) = h(ccL 2) + f ( ~ L  2 ) - Ld-2e(L) 

and 

The shifted temperature is 

(57) 

(58) 

(59) 

(60) 2 ) L  2 a 7 = t - e ( L ) = t -  Tc A ~ - j - L - ~ c  1 

where the shift goes like L ~/~, in accord with standard finite size scaling 
conjectures. The dominant correction term is b ~L2/L 4-d, which is propor- 
tional to the parameter which multiples the bulk correction, b, and scales 
as predicted by corrections to finite size scaling (Eq. (7)). 

Numerically, it is found that 

f(o~Z 2) ~ e -aL2q o~Z2 (61) 

is a good approximation to the first few terms of the expansion off(c~L2). 
Under this approximation 

d Tcq 
e(L) ~ d -  2 L d 2 (62) 

822/43/1-2-5 
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and 

~L 2 d -  2 qZ~L2 + "'" (63) 

Using similar methods it is possible to generate an expansion in the 
region where ~L 2 is large. The result is 

e -~L2ql l  2 1 
/3L=/~+--L-7=~ ~Z2 d - 2  ~-O(~L2) (64) 

In this region, the convergence to infinite behavior is exponentially fast, a 
well-known result. (") 

The discussion from here on will be divided into various dimensions. 

(a )  2 < d < 4  

To see that Eq. (54) is the expected scaling form for the susceptibility, 
consider that in the infinite system Eq. (53) implies the following for the 
susceptibility 

X ~ t  Y[1-O(tP)] (65) 

with 7 = 2/(d- 2), p = ( 4 -  d)/(d- 2), and v = 1/(d- 2). It follows from 
Eq. (7) that the expected from is 

ZL=LZX(TLd-Z)+L a 2y(~La 2) (66) 

Indeed, inverting Eq. (54) yields precisely this, asymptotically. 
The correlation length also scales as predicted, with corrections 

occurring asymptotically from the bulk. A phenomenological tenor- 
realization experiment (PR) would find ~L/L as shown in Figs. 1 and 2. 
These functions cross for various L at t = e(L). It can be seen that for this 
system in this dimensional regime PR experiments provide good evidence 
for a phase transition and approximations to the exponents. We also add 
that expansion yields an approximate form for the scaling function 

q2(8-d) I x+(x2  2q4(8-d).)l/2]-' X(x) ~ -~'---d) ~ (67) 

This holds in the finite size region and in the low temperature phase, where 

L a 
ZL~--~ [e(L) + Itl ] (68) 
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L 
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Fig. 1. Results of a PR experiment (~2/L2 vs. t) for d =  3. Curves cross at t = e(L), which is 
indistinguishable from t = 0 for L ~> 32. Curves are calculated as described in Section 3. 
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I I I N.N \ " l  
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5 
~..A 

tL 

Fig. 2. ~2/L2 vs .  tL 1/~ for three-dimensional spherical model (1/v = 1). Finite size scaling 
predicts that these curves collapse in the scaling region, which they do for L ~> 32. 
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As dimension four is approached, the scaling function diverges, as 
does the leading correction term. The reason can be seen in Eq. (54). As 
the upper critical dimension is crossed, the finite size scaling term and the 
dominant correction term exchange roles. At d = 4 they have combined to 
produce logarithmic dependence. 

La-2 t=  leL 2 2(q--d~ eL2-t 2( q---d d ) e L 4 - a L d - 2 + " "  

1 qdL2  ln(L/Lo)  as d ~  4 
-~ eL  ~ e 

(69) 

(See Eq. (29) for origin of L~ = Ko/q). 
Similarly as dimension two is approached, divergences occur in the 

shift, the scaling function, and corrections. The divergence of the shift com- 
bines with the divergence of tic to produce logarithms. The scaling function 
and correction divergences combine to produce finite terms as well. 

(b)  d~<2 

It is interesting to consider the above analysis for d~<2, the lower 
critical dimension. This is relevant to applications of finite size scaling to 
the question of whether a system undergoes a phase transition. In this 
region, there is a critical transition at T=  0 in both the infinite and finite 
systems. The expected behavior is crossover from Z L ~ L a T  -1 in the finite 
system, to Z,,~T -2/(d 21 (or z ~ e  2/r for d = 2 )  in the infinite system. 
Crossover scaling has been discussed by Fisher, ~ see also Ref. 11. The 
correlation length diverges at T= 0 in the infinite system, but is bounded 
by L in the finite system. 

We first consider d strictly less than 2. In this case 

floe(e) ~ ae (a- 2)/2 + ~o + be + . . .  (70) 

Similar analysis to the above yields the scaling equation 

L 2 d fl0 g(eL2) 
T - f ( e L 2 ) + h ( e L 2 ) + - I T - ~ - 3 +  L 2 (71) 

where 

h(eL2) = - q  
( -  1)" q"+ 1(eL2)" 

n=o n~(-2n --~ ~/-fi-~ (72) 

Evidently, ~(L)=0 and the corrections a r e  g(~LZ)/L 2 from the RHS of 
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(71), and f l o / L  2 a from corrections to bulk scaling. Again, the bulk correc- 
tion dominates. Thus, the susceptibility takes the crossover scaling form 

Z c  = L2X( TL2 a) + LaY(TL2-d) (73) 

This is as predicted because the infinite susceptibility takes the form 

1 2 d 2 
'~-~t-~) /( ) [-1-{- O ( T ) ]  Zoo 

Expanding f(~L 2) to get the scaling functions yields 

L2-a.T] 

(74) 

(75) 

Thus, PR experiments would show clearly the transition at T=  0 (the only 
intersection point of Eq. (75) for varying L) and converge to the correct 
exponent. This is shown in Fig. 3. 

Two is the lower critical dimensionality. Here the infinite model 
exhibits essential singularities in the thermodynamics at T=  0 

4oo ~el/T (76) 

Zoo "~e 2/:r (77) 

I I 

021 

0,15 

,'2 

e4,j 
~-- 0,10 

0,05 :5 

I i - " ' - "  - -  
0 .2  0 . 4  0 ,6  

T 

Fig. 3. Results of a PR experiment for d =  1 spherical model. The transition at T = 0  is 
clearly shown by the intersection of these curves at that point. 
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The finite model constraint equation takes the form 

g(~L 2) 
1 qln(qLZ)+b+c~+O(d2)=h(otL2)+f(~tL2)_  ~ L 2 
T 

(78) 

with 
h(~L 2) = ~ ( -  1)n(~LZq)n (79) 

n'n!  n = l  

We see that a logarithmic term makes reduction to the pure power law 
scaling form like Eq. (73) impossible. This can be seen clearly by inverting 
Eq. (78) to yield 

t T ) ZL(T)  = L 2 X  1 - A T l n  L 2 (80) 

and 

L/L - Y I _ A T l n L 2  (81) 

with ~c as defined in (35), and A a constant. Expanding f ( e L  2) yields, in 
the low-temperature limit 

T 
L2~ ~ 1 - A T l n  L 2 (82) 

and 

1 1 Z2)] ~ / L 2 ~  [ - - ~  (T + AT21n (83) 

The functions ~2/L2 do not cross; they collapse (Fig. 4). The scaling 
function is 1 -  T, which is consistent with v = ~ .  The width of the finite 
size scaling region is also consistent with v =  ~ ,  but the combination 
makes reduction to Eq. (75) impossible. 

The reason for our failure to achieve the scaling form is clear. 
Derivation of this form assumes power law singularities, whereas the 2-d 
spherical model exhibits essential singularities. It is possible to generalize 
finite size scaling to include both types of singularities. The expected 
general scaling forms are (12'8) 

~L/L = Y(~oo/L) (84) 

z~ = zoo(T) Z(~o/L) (85) 
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L=8 

2 

L:64 L=32 
, , 

0 0,5 1,0 1, 2.0 

T 
Fig. 4. Results of a PR experiment for d = 2  spherical model. Curves do not  cross at the 
critical point; they collapse as the critical point is approached. Collapse is onto a linear 
function (1 - aT). 

Equations (80) and (81) fall precisely in this form (using ~ 2 = Z ~  in 
Eq. (80)). 

It is reasonable to ask whether this picture of the scaling of the two- 
dimensional spherical model is generic to critical transitions at the lower 
critical dimensionality. If it is, this is extremely relevant to PR studies of 
other systems at their lower critical dimensionality. (Examples are Ref. 19 
where finite size scaling is applied to the determination of the lower critical 
dimension of the random field Ising model, and Monte Carlo studies of 
certain lattice gauge theories in four dimensions which are believed to 
behave like two-dimensional spin systems. (2~ See also Ref. 25, which dis- 
cusses the 0(2) Heisenberg model in 1 + 1 dimension.) To address this 
question we consider the periodic one-dimensional Ising model, one being 
its lower critical dimensionality. A simple calculation on the one-dimen- 
sional Ising model yields (see Ref. 21, p. 138 for the correlation function of 
the finite model) 

% 
~(is~.g) = L2 (ln tanh flj)z + (87) 

(We have again used Eq. (35) as our definition of ~L') 
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The following conclusions hold for both models: 

1. Correlation lengths of both scale like 

r = Y(r (88) 

Thus, both exhibit apparent collapse of r for various L (shown in Fig. 5 
for the Ising model). The asymptotic forms are 
Ising 

2 2 ~  _ _  ~L/L =1 L2/~  (89) 

Spherical 
1 

2 2 ~  ~L/L = 1 (90) 
in (~oo/L) 

2. The susceptibilities of both scale like 

The asymptotic forms are 
Ising 

1,2 t 

zL  = Zoo(T)  Z(r (91) 

L L / ~ ]  (92) Z L - ~ y [ 1  - 

Fig. 5. 

c 

i 

~ j  

1,0 L=4 

0,8 

0.6 

I I 

0.4 0.6 0.8 1.0 
T 

Same as Fig. 4 for one-dimensional [sing model. Curves again show collapse, in this 
case onto a constant function. 
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Spherical 

ZL -~ L2 ln(~ oo/L 2) (93) 

The way in which Eqs. (92) and (93) satisfy Eq. (81) involves the various 
relationships between {oo and Zoo 

Zoo spherical = ~ 2  spherical (94) 

1 (95) 
Z ~ ising = -T ~ oo ising 

Analyzing data using Eq. (91) will not in general be easy since Zoo is 
generally unknown. It would therefore be useful to be able to predict a sim- 
pler form, like (92) or (93). To do this requires knowledge of the precise 
relation between Zoo and {~. If, for example 

Z~ = T P ~  (96) 

then scaling can be simplified to the useful form 

(c) d~> 4 

We shall first consider d>  4. For 4 < d <  6, the infinite system satisfies 

f l ~ ( ~ )  = / ~ .  - a a  + b~  (d 2//2 + . . .  (97) 

The constraint equation is 

_ L  d-2 g(gL 2) 
It - g(L)] = f(~L 2) + h(c~L 2) - L ~- 2~a + ~ + L a- 20(~2) (98) 

Here 

~(L) = ? T  2 

{d  2 2 4q(d+ 2)/2 h(c~L 2) = q[e--9"qr2 - -  1 ] ( d -  2 ) ( d -  4) e-Z~L2q0~L2 (99) 

4 o~ ( _ I F ( ~ L ~ q ) ~ + ~  

- ( d _ 2 ~ d _ 4 ) , , ~  ~ ~ - . T ( n T ~  ) 
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It would appear that this violates scaling, as argued by Brezin 2. For 
example 

ZL(7 = O) ,.~ aL d/2 (100) 

rather than like L 2 as  expected. However, this also falls in the scaling form 

_ L  2 T "{ = -a~ +f(~L2)  + h(ctL2) 
n d 4 (101) 

This is exactly the expected form 

Z(o~L 2 ) 
L2t=  W(otL 2) q LCl_4 (102) 

with 

W(~L 2) = ao~t 2 

and the correction term 

Z(ctL 2) = -/(c~L 2 ) - h(~r  2) 

The shift is 

(103) 

(104) 

Tcq 
~(L) =Ld_2  (105) 

which now vanishes faster than the width of the finite size region, which 
vanishes like 1/L 2. 

The origin of the discrepancy between the two results (Eq. (102) and 
(98)) is that the correction term has a pole at c~=0. Thus, although it 
becomes asymptotically small as L ~ oo for fixed e, it diverges as ~ ~ 0 

1 
Z(c~L 2) o~L2 as ~L2- -+0  (106) 

We see that the correction can only be ignored if ~ > 1/L d 2. The con- 
clusion is that the predicted scaling form holds only for t > e(L). In a small 
region above Tc finite size scaling fails in the manner discovered by Brezin. 
This is illustrated in Fig. 6 and 7. 

The nonanalyticity of the correction function provides the clue to the 
explanation of this behavior--the scaling is controlled by the presence of a 
dangerous irrelevant variable. A variable u is called a dangerous irrelevant 
variable if it is irrelevant in the RG sense (i.e., u flows to a fixed point of 
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5 x l f f  ~ 
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3 

Fig. 6. 
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-4,0 0 4,0 8,0x10 -3 
t 

PR experiment for d =  5 spherical model, Curves cross at t =  e(L). 

zero under action of RG), but the scaling functions are not analytic 
functions of u near the fixed point of u. For  example, consider the scaling 
equation of the susceptibility 

Zoo(t, u)= b~/VX( tbl/V, ub y) (107) 

and assume that the fixed point is 

t = u = 0  (108) 

u is irrelevant so y < 0. If the scaling function has the property that near the 
fixed point it is not analytic in u, say 

W ( x )  x ~ 0 
X(x, y)--+ x/7 as y--+0 (109) 

then u is called a dangerous variable. Note that away from the fixed point 
X can be analytic in u 

X(1, y) --= X(1, 0) + yXy(1, 0) + ... (110) 

These variables provide the accepted mechanism of the failure of hyper- 
scaling above the upper critical dimension of general critical systems (see 
Ref. 15 for an explanation of how that works). Since hyperscaling fails for 
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_=2 

2,0 4 ,0  6.0 8.0 

t L z 

(a) 

5,1 x 10 -z , , 

Y 
4,8 

4,5 0 

LL 2 

(b) 

Fig. 7. (a) ~2/L2 vs. tL 1Iv for d =  5 spherical model. Shift is no longer ocL I/v, so the scaled 
curves appear shifted. Except for the shift, the curves scale in a region not too close to t = 0, 
but  fail to scale close to t = 0  (dashed box). (b) Nonscal ing region of Fig. 7a (dashed box) 
enlarged. 
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the spherical model in more than four dimensions, a dangerous irrelevant 
variable must be involved. To see how this would affect the finite size 
scaling, assume that the scaling ansatz equation (5) holds, but u is now 
dfingerous. Then not too close to criticality, 7L l/v~ 1, Eq. (7) holds and 

zL(t) = L~/Vy(TL1/V) + L (~ P)/vY("[L1/v) (111) 

a s  L1/V'[ = 0 is approached, Eq. (109) holds and the scaling form However, 
is 

L~/v W(~fL1/~) 
zL(t) = / -  (112) 

This is precisely the behavior described above for the spherical model in 
more than four dimensions. In fact, if we introduce a u into the spherical 
model by rewriting the constraint equation 

uL 4 d 
L27= ao~L 2 c~L2 (113) 

then u is a very reasonable choice for our irrelevant variable because: (1) 
corrections are proportional to u; (2) u scales as uLa-a; (3) u = 0  
reproduces the Gaussian model result of a classical phase transition even in 
a finite system. 

(In appendix B we show how to introduce a u into the spherical model 
rigorously with the same result). The equation for the susceptibility 

)(. L =_ L 2 1 -~1 2 1 ~L4_d~l/2 (114) 
1+ j 

has precisely the properties described above. Thus, we claim that it is not 
finite size scaling that fails above the upper critical dimension, but 
hyperscaling. 

An infinite system above the upper critical dimension is known to 
exhibit mean field critical behavior. We now address the question of 
whether that is true for the finite system as well. It has been argued by 
Brezin (2) that it is not true, because mean field theory shows no finite size 
effects. The Gaussian model shows no finite size effects, but the definition of 
mean field theory appropriate to this question is the theory which predicts 
the behavior of (~4 theory, namely that defined by the free energy (22) 

f 
o o  

F(t,h,u)=-L-aln d~exp{-Ld[t~gZ--h~+u~4]} 
o o  

(115) 
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For L infinite, this yields conventional mean field theory. For finite L, we 
dub this theory rounded mean field theory (RMF), because it exhibits finite 
rounding. RMF predicts both the scaling form of the spherical model, 
Eq. (102), and the dangerous irrelevant variable structure, Eq. (112). Near 
the critical point, the susceptibility of RMF is 

Ld/2 Ldt  
(116) zL( t~~  / u . 

identical to that of the spherical model obtained by expanding Eq. (114) 
for small 7. 

For d=4,  mean field theory must be renormalized to produce the 
correct results of Ginzburg-Landau-Wilson theory, as is well known from 
RG theory/z31 Renormalizing RMF theory yields 

F =  L - 4  In ol dO exp{ - -  L4[-( t@ 2 -1- ul/t 4) ( 0 -  I ( L )  - h ~ ]  } 

= L - a E ( t L 2 g o ( L ) -  1/2, hL3go(L)1/4) 

where 

(117) 

1 
go(L)- 1 +A In L (118) 

This form follows from a standard development of the free energy of a four- 
dimensional system. (23) It holds only in the finite size regime. Taking two 
derivatives with respect to h we obtain when h = 0, 

1 •2E 
)~L-  L 4 - ~  h : o = L 2 g o m E ( O , O ) + L 4 t E l ( O , O ) +  "'" 119) 

The constraint equation of the finite spherical model is 

L 2 [ - t / T + ~ - ~ ] =  - ~ L 2 1 n L 2 +  f ( ~ L 2 ) + h ( ~ L 2 ) +  . . .  (120) 

e (L )  = T c g / L  2 

h(~L 2) = q2 f ~ L 2  _ bctL 2 + ~ L  2 In q2 
t 

(121) 
1 [e_:~L2 q + - - 1 ] - L 1 

( -  1)~(~L2q) "+ 

q ,=o n ' ~ .  ) 

7 = constant 
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Expanding for the susceptibility as before, 

ZL = L2( In Z 2 )  1/2 - -  L4t" (122) 

This is identical to the RMF result. Thus, mean field theory does predict 
the finite size behavior of the spherical model. (We also note that the 
generalized scaling forms for the d =  2 system hold for the d =  4 system as 
well.) 

In Brezin's study of the finite spherical model, ~2) he concludes the 
model indicates that it is not possible to compute the universal scaling 
functions from an epsilon expansion. His reasons are that mean field theory 
does not represent the limiting theory as it exhibits no finite size effects, 
and that the scaling functions are singular as epsilon approaches zero. 
However, we have shown that RMF theory does represent the correct 
theory in the limit d goes to du. The question remains, does the singularity 
of the scaling function present any difficulty in performing an epsilon 
expansion. It is clear that it does not. Note that although the scaling 
function for the susceptibility d <  4 

ZL(I)=L2X(L1/v~o)=L2qd[L1/"~+((L1/~)2 +~--~I/21 I (t23) 

is singular in epsilon, X(L1/V~, u) is not, as we have seen (see Eq. (69)). This 
is because the expansion about u = 0 becomes ill behaved at d =  4, because 
u is becoming a dangerous irrelevant variable. It is no different in the 
infinite system. Here the susceptibility is 

Xm(t)_Id22F(4~_2d)12/(a-2)t-2/(a 2) (124) 

This is also singular in epsilon. No one would assert that an epsilon expan- 
sion cannot be used to evaluate the scaling functions in the infinite 
spherical model, because it can. In fact, in ~b 4 theory u also becomes a 
dangerous irrelevant variable as epsilon goes to zero, so the same picture is 
reproduced there, as is well known. Therefore, there is nothing in the 
results of the finite spherical model which suggests that an epsilon expan- 
sion cannot be used to investigate a finite system. 

5. S U M M A R Y  

We have shown that the Ewald sum technique provides a method of 
studying the fully finite spherical model which facilitates both numerical 
and analytic study. Numerically, there are no restrictions on the values of 
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L, T, or H that can be reached. Analytically, expansions can be generated 
both away from criticality and in the finite size scaling region. The 
numerical results were applied to produce graphs of the correlation length 
in all dimensions less than six. The analytic results were used to study the 
form of finite size scaling. We have shown that finite size scaling holds in 
all dimensions except two and four. In two dimensions a universal form for 
the modified scaling form was proposed. In four dimensions the scaling was 
that predicted by renormalized mean field theory. In more than four 
dimensions, the scaling is dictated by the presence of a dangerous irrelevant 
variable, and is precisely that predicted by mean field theory. Thus, the 
possibility of performing an epsilon expansion cannot be ruled out. 
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APPENDIX  A 

In this section we describe how to perform the sum 

~2/L2 2 i=1 (A.1)  

Z G(1) 
l 

The methods involved are elementary, but it is a somewhat tedious com- 
putation. 

First consider the sum 

= . 

L j ~ l  
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Expanding cos((21t/L) Z l  aniI~) via 
identity 

COS 

trigonometric identities results in the 

) '  , 

T , = , " ~ '  = I I  c,- E s,sj [I c~ 
i=1 i,j=l k~i,j  

i<j 
d d 

+ ~ s~sjs~st I] c,.+'" 
i,j,k,l m ~ i,j,k,l 

i<j<k<l  

where we have defined 

ci=_ cos ( ~ l,n,) 

s , -  sin (2--Z lin,) 

(A.3) 

(A.4) 

The series in (A.3) terminates at [I~= 1 si for d even and 
( - 1)<a- 1)/2 ~2il,...,u_1,il <i2... <i,_1 si~"" Su_lC u for d odd. 

The sum on l of all the terms with sines will be zero by the identity 

The remaining term, 

/ = l  

COS ~ l i 2 d 2r~ (A.6) 

1 

can be summed on l via the identities: 

cos - -  = L6n, o 
l = l  

(A.7) 

t_1 cos cos =-~ (~.,1 + ~.,L 1) 

Thus, (A.6) reduces to 

~tdnl,...~,nj j = l  5((~nj'l "~-(~nj'L~--l) i~jI~ t(~ni, O ~ 1 1 - -  COS T ) J  

d 

822/'43/1-2-6 
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The final sum can be shown to be 

L 1 
G( l) fl~ (A.9) 

l = 1  

by methods above. Together, this yields the desired result 

~2 dL2 o~ 
1 -  (A.10) 

APPENDIX B 

In this Appendix we show how the spherical model can be modified to 
accommodate an adjustable variable u. This variable will play the same 
role as u in ~b 4 theory: in more than four dimensions u will be a dangerous 
irrelevant variable, and in less than four dimensions u - u *  will be the 
leading irrelevant variable, with u* nonzero. In RG theory, this variable 
governs the size of the critical region. Since the size of the critical region of 
the spherical model is finite, such a variable must exist. Our modified 
model will be identical to the spherical model for some value of u, but will 
allow u to vary. 

The modification is threefold. First, we introduce a Gaussian damping 
term into the partition function. In the absence of a spherical constraint the 
new partition function is 

; e x p I ~ J ~ ' a ~ a j - ~ a ~ l [ I d a  e (B.1) 

where the sum Z '  is over nearest neighbor pairs. This Gaussian model par- 
tition function is singular when the temperature T is such that 

~cJd = co (B.2) 

where //c = 1/kTc, and d equals the spatial dimensionality of the system. 
When T <  Tc the partition function (B.1) is undefined. The purpose of this 
first modification is to keep the transition temperature finite, even in the 
absence of spherical constraint. 

Our next step is to introduce the soft spherical constraint 

U "~1/2 e (u/N)(~.ia2N)2 (B.3) 
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In the limit u =  oo this factor becomes a delta function and the strict 
spherical model constraint is recovered. As the variable u goes to zero the 
constraint disappears and our model is once again a pure Gaussian model. 
It seems clear now, and we will establish shortly, that this latter limit is 
singular. Our softening of the spherical constraint parallels closely Wilson's 
softening of the spin-by-spin constraint in fixed-length spin models to 
derive the Ginsburg-Landau-Wilson effective Hamiltonian as a description 
of the Ising system. (23) 

The partition function of our soft-constraint spherical model is 

U (0.2 N)2 ]  Z , ~ = ( ~ N ) l / e f e x p [ f l J 2 ' ~ r i f f j - c o ~ ( 7 2 - ~ ( ,  i - J~ii dcri 

=f_i~d2f [IdJiexp flJ~'aiaJ-co2a2-;t ~a2-N + - ~ u J  
i 

(B.4) 

The new variable 2, introduced by means of an identity on Gaussian 
integrals, will play a key role in the analysis to follow. 

For fixed 2 the integration over the spin variables, r is carried out by 
going over to their spatial fourier transforms, s(q). Carrying out this trans- 
formation and integrating over the values of s(q), we are left with the 
following single integral for the partition function 

Z . -  exp - 2 g l n  2+co-flJ~cosg~ + 2 N +  4 u j d 2  (B.5) 

The integral over 2 can be carried out by the method of steepest descents. 
We replace the integral by the integrand with 2 taking on the value at 
which it satisfied the extremum equation 

~-~ ~ In 2 + c o - f l J ~ c o s g ,  + 4 u ]  0 
i 

or 

' 2 ]  ,.6t 
2 = u  2 +co-flJd+ flJZ(1 - - C O S  gi) 

Our final modification of the spherical model is to take this steepest 
descents result as yielding the exact partition function, even when N, the 
number of degrees of freedom, is finite. Thus, we are looking at a mean, 
softened constraint, spherical model. 
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From this point on the analysis proceeds straightforwardly. In more 
than four dimensions we can neglect all contributions to the sum in (B.6) 
except the q = 0 one. The extremum equation is, 

u 
2 - (B.7) 

N [  2 + ~o - ~Jd] 

where the subtraction in the square brackets has also been neglected. 
Writing 2 + w - ~Jd = ~ we have 

~_~o + / ~ j d = u L  d (B.8) 

D e f i n i n g  A T  via 

1 
/3 - (B.9)  

K( T~ + A T) 

We have, neglecting terms of order A T 2, 

Jd uL -a  
c~ - - - - 2  A T -  - -  

K I  
= 0  

which when multiplied by L 2 yields 

J d  u L  4 - -  d 
~L 2 -  ~;~ (~ 7~L 2) ~1~ = o (B. lo)  

which, except for scale factors and some modification of notation, is iden- 
tical to constraint equation (113) in the text. 
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